Processing Airborne Lidar & Images

Arttu Soininen Software developer Terrasolid Ltd

Processing applications

- TerraScan for MicroStation 5 100 €

 laser data processing
 TerraModeler for MicroStation 3 400 €

 terrain modeling
- TerraMatch for MicroStation 5 100 €
 fix systematic errors in laser data
- TerraPhoto for MicroStation 5 100 €
 orthorectifying images

Triangulated surface

Model visualization

Processing steps

- Import points into TerraScan (transforming xy)
- Import trajectories into TerraScan (transforming xy)
- Adjust from ellipsoidal to geoid based height model
- Make sure points & trajectories have matching numbering
- Validate that area is covered
- Validate that flightlines match
- Remove points we do not use
- ☑ Classify noise (below ground or in the air)
- Classify ground
- Validate ground classification visually
- Classify by height from ground (low/medium/high vegetation)
- □ Classify objects manually
- □ Vectorize (buildings, breaklines, powerlines, trees)
- Classify model keypoints to produce model

Processing Steps

- 1. Match flightlines
 - Fine tune calibration
 - Improve positional accuracy

Expert work Computer time

- 2. Classify
 - Ground, vegetation, building...

Lower skill work Human time

- 3. Create delivery products
 - Contours
 - Powerline model
 - 3D vector models
 - Timber volume

Application specific expertise

Validating that flightlines match

- Measure a value of how well flightlines match
- Solve/fix misalignment angles & mirror scale
- Solve/fix dz (and optional params) per line
- (Optional) Solve/apply fluctuating z corrections

Removing unneeded points

- Outside project area
- Over water bodies
- Collected when aircraft was turning
- Lower quality when better quality is available
- Edges of scan lines

Why to cut edges of scan lines?

- Produce more consistent pattern of points
- Remove less accurate points
- Many error sources increase at edges:
 - heading, roll, mirror scale
 - poor measurement angle

Point classification

Automatic and manual routines

Smoothing

- Laser data is dense but noisy
- Smoothing modifies point elevations in places where that produces a smooth surface

▼ >>

 \rightarrow

Cancel

m

m

Produces a prettier surface

Model keypoints

- Selects points which are most relevant for creating a triangulated surface model
- User specifies maximum difference between keypoint TIN and ground laser points

Vectorizing Breakline Features

- Draw road feature in 2D using on top of ortho
- Drape to follow laser surface

Vectorizing Breakline Features

- End result is a 3D vector which follows the general laser surface
- Logic written for and makes use of high density of laser data

🔁 Drape Linear Element 📃 🗖 🗙
Runs along:Edge of surfaceFrom class:2 - GroundOffset:0.00-3.00m
☑ Smoothen Z Maximum: 0.050 m ☑ Thin Accuracy: 0.010 m
Create copy Set symbology Strip <u>a</u> ttributes
Shift Distance: 0.010 m

Vectorizing buildings

- Approximate models -- automatic
- Accurate models require manual work
- User modifies edges with the help of camera images
- Resulting 3D model has walls starting from below ground

Vectorizing transmission lines

- Goals:
 - Mapping of towers and wires
 - Search danger trees
 - Modeling for increased capacity
- One or more cameras during flight

Tower & laser points

Tower & vertical facing camera

TerraPhoto task

TerraPhoto for MicroStation

- Produce orthorectified images
- Provide perspective views for
 - laser data classification
 - building vectorization
 - powerline tower vectorization

TerraPhoto for MicroStation or TerraPhoto Viewer

- Display background raster images
- Render scenes with large image volume
- Produce flythru animations

TerraPhoto

- Written for digital cameras integrated with laser scanners
- Assumes raw positioning for images is good
 - computed from GPS/IMU
 - best systems provide one pixel level raw positioning
- Does not need any known points
- Uses laser surface as the rectification surface
- Can derive all camera parameters

Perspective view principle

- View the world as seen by one camera image
- Viewer eye is at camera focal point xyz
- Compare any 3D information against the image

Perspective views Building vectorization

